I got this excerpt from the blog Addiction Inbox:
Writing in The Scientist in 2002, Tom Hollon made the argument that “glutamate’s role in cocaine dependence is even more central than dopamine’s.” Knockout mice lacking the glutamate receptor mGluR5, engineered at GlaxoSmithKline, proved indifferent to cocaine in a study published in Nature.

In an article for Neuropsychology in 2009, Peter Kalivas of the Medical University of South Carolina and coworkers further refined the notion of glutamine-related addictive triggers: “Cortico-striatal glutamate transmission has been implicated in both the initiation and expression of addiction related behaviors, such as locomotor sensitization and drug-seeking,” Kalivas writes.“While glutamate transmission onto dopamine cells in the ventral tegmental area undergoes transient plasticity important for establishing addiction-related behaviors, glutamatergic plasticity in the nucleus accumbens is critical for the expression of these behaviors.”

The same year, in Nature Reviews: Neuroscience, Kalivas laid out his “glutamate homeostasis hypothesis of addiction.”

A failure of the prefrontal cortex to control drug-seeking behaviors can be linked to an enduring imbalance between synaptic and non-synaptic glutamate, termed glutamate homeostasis. The imbalance in glutamate homeostasis engenders changes in neuroplasticity that impair communication between the prefrontal cortex and the nucleus accumbens. Some of these pathological changes are amenable to new glutamate- and neuroplasticity-based pharmacotherapies for treating addiction.